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Abstract. We consider self-avoiding walks on the square lattice which are confined to lie 
in or on the boundary of a square with vertices at (0, 0), (0, L ) ,  ( L ,  0) and ( L ,  L ) .  We ask 
for the number of such walks which begin at the origin and end at the vertex ( L ,  L), 
especially in the large L limit. Similarly we ask for the mean number of steps in such walks 
as a function of L. At fixed L we also associate a fugacity with the number of steps of the 
walk and ask how the system behaves as a function of this fugacity. We provide some 
rigorous results, in particular proving that there is a phase transition at some particular 
value of the fugacity, and supplement these with the analysis of series data for the problem. 

1. Introduction 

There has been a good deal of recent interest in the theoretical treatment of several 
phase transitions which occur in long linear polymers in dilute solution. These include 
the collapse transition, in which the polymer can be modelled as a self-avoiding walk 
on a lattice, with attractive near-neighbour interactions between pairs of vertices which 
occupy adjacent lattice sites. If the attraction is weak the walk behaves as a random 
coil but, for sufficiently strong interactions, a collapse transition occurs to a ball with 
dimensions much less than those of the corresponding coil. This transition has been 
studied by a variety of different techniques [I-71. A second kind of phase transition 
which has also received a good deal of attention is the rod-coil transition, associated 
with a change in the flexibility of the polymer [8-lo]. 

In this paper we consider yet another self-avoiding walk problem which has a n  
associated phase transition. Although the problem was first posed to us as a problem 
in communication theory (asking for the number of distinct self-avoiding walks which 
cross a square), we believe that its solution will help in the understanding of polymer 
phase transitions. We consider the square lattice (the integer points in R 2 )  and focus 
our  attention on the square with vertices (0, O), (0, L ) ,  ( L ,  L )  and ( L ,  0). We ask for 
the number, c (  L ) ,  of self-avoiding walks which begin at the origin and  end at the point 
( L ,  L ) ,  without ever leaving the square. In  section 2 we show that this quantity grows 

We can associate a fugacity with the number of steps in the walk, so that for values 
of the fugacity much less than unity the dominant walks will be those which cross the 
square with only a small number of steps. One might expect that there will be a 
transition at some value of the fugacity from a regime in which walks with O( L )  steps 
dominate to one in which walks with O(L' )  steps dominate. We investigate this question 
in section 3, and prove that such a phase transition exists. 

as * L'+O( L'l 
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In section 4 we derive exact values of c,,(L), the number of walks with n steps 
which cross the L x  L square, for small values of L, and analyse these data to form 
estimates of the large L behaviour and, in particular, of the location of the transition. 

A similar problem has been treated by Hattori er al [ l l ] ,  for self-avoiding walks 
on the pre-Sierpinski gasket. 

2. The number of walks and the mean number of edges 

We consider an L x  L square on the square lattice with one vertex the origin and the 
opposing vertex at ( L ,  L ) .  Suppose that c,( L )  is the number of self-avoiding walks 
with n steps which are confined to lie in this square and which start at the origin and 
end at ( L ,  L ) .  Define 

c ( L ) = C  cn(L).  (2.1) 
n 

Clearly the minimum value of n is given by nmin  = 2L. Similarly, the maximum value 
of n is given by nmax = L2 + 2L if L is even and by nmax = L2 + 2L - 1 if L is odd. If we 
write c, for the number of self-avoiding walks with n steps then, since c,(L) =s c,, we 
have 
c ( L ) s ( L ’ + ~ L - ~ L + I )  max[c,: ~ L S  n <  L ~ + ~ L ] = ( L * + I ) C ~ ’ + + ~ ~  (2.2) 

(2.3) 

since c,,+~ 3 c,. Hence 

lim sup L - ~  log c ( L )  s log p 
L - x  

where p is the growth constant for self-avoiding walks [12] defined by 
n - x  lim n-l log c, = log /L s l o g  3. (2.4) 

In order to prove the existence of a corresponding limit we first look for a suitable 
concatenation to derive a super-multiplicative inequality. We consider an L x L square 
and partially cover this with squares of side M + 2, as shown in figure 1 .  We write 

L = p (  M + 2) + q 

Figure 1. An L x L square contains p’ squares of side M x M suitably concatenated. Each 
M x M square is independently crossed by a self-avoiding walk, confined to lie in this 
square. 
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with 0 s q < M + 2. Each of the p2  M x M squares can be crossed independently in 
c ( M )  ways so we have 

c( L )  3 c( M y z .  (2.6) 

We write 

For all E > 0 

Now choose 

Then 

and 

Then letting 

lim sup L - ~  log C ( L )  = log A.  
L - r  

there exists an infinite set of integers Y ( E )  such that for all L E  Y ( E )  

E 
log A - - s  L-2 log C(  L )  log A. 

2 

M E Y (  E )  sufficiently large that 

(A) ' ( log A - i) 3 log A - E. 

l i m i n f T 3  L - r  10gc(L)  L- ( M ~ 2 ) 1 ( I O P A - ~ ) p l o g A - r .  - 

E + O establishes that 

so that the limit 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

exists. 
We now consider a corresponding lower bound on c( L ) .  The idea is to notice that, 

at least for L even, walks with the maximum number of steps are Hamiltonian walks 
since they visit every vertex of the square. Since the number of Hamiltonian walks on 
the Manhattan lattice is known [13] one might hope to use this as a lower bound on 
c( L) .  Unfortunately this result is for periodic boundary conditions while we are 
interested in walks which never leave the square. Instead we derive a lower bound on 
the number of Hamiltonian walks of this type by adapting an argument due to Gujirati 
[14]. We first cover a square of side Lo= L -  1 with disjoint rectangles of maximum 
size ( 1  x m ) .  With fixed m 3 1 we write 

Lo = ( m  + 1)p + q (2.14) 

with 0 s q < m. Each column of the square is covered with a stack of p (  1 x m )  rectangles, 
each pair separated by one lattice space, with finally a ( 1  x q )  rectangle. The square 
is now covered with s of these stacks, separated by one lattice space, where s = ( L o  + 1)/2 
if Lo is odd and s = L0/2  if Lo is even. In each set of m rows the polygons can be 
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connected to form a large polygon in mS- '  ways, and in the last row the polygons can 
be connected in qs- '  ways. Then each of the first p rows can be joined to its neighbour 
below in at least s ways. The resulting graphs are all polygons, and they are Hamiltonian 
if Lo is odd. (For Lo even, the vertices in the right-most column of the square are not 
covered by the polygon.) If h"(L,) is the number of Hamiltonian polygons in the 
L o x  Lo square we then obtain the following bound 

(2.15) ho(L,)asPmP"-"> m [ Lz/2( m+ I 11 

Hence 

log m 
log p H  = lim L,' log h"(Lo)  a- 

L p a ,  2 ( m + l ) '  
(2.16) 

This bound is most effective when m = 4, giving LO2 log h"( Lo) 2 0.1386.. . . 
To convert the polygon into a walk which crosses the square we first translate the 
L o x  Lo square by one unit in the positive y direction. Then delete the edge (0, 1)-( 1, l),  
add the edge (0,O)-(0, 1) and the edges (1,l)-(l ,O),  (1,O)-(2,0), . . . , (L-1,O)-(L,O), 
( L ,  0)- (L ,  l ) ,  . . . , ( L ,  L -  1)-(L, L) .  Each polygon gives a unique walk by this construc- 
tion and we obtain the bound 

lim L-2 log c( L) 3 lim L-2 log h"( L )  2 0.1386 . . . . (2.17) 
L-a, L - x  

We are also interested in the mean number of steps in walks which cross an L x  L 
square. We define 

and note that 

c n ( L ) s c n  = p n + o ( n ) .  

(2.18) 

(2.19) 

If n = o( L2)  then cn( L )  c p0(") so that all except exponentially few walks have of order 
L2 steps. Hence the mean number of steps must also be of order L2. 

3. The influence of a step fugacity 

In this section we fix L, the size of the square, but give a weight to each walk which 
crosses the square, where the weight depends on the number of steps. We define the 
generating function 

where x is a 'step fugacity'. 
F o r f i x e d x s l ,  C , ( x ) a c ( L ) a n d f o r f i x e d x > l  

C,(x) s c( L)x"-.x 

so that L-2 log CL(x) is bounded above for all finite x. We write 

Iim sup L-' log CL(x)  =log A ( x ) .  
L-C€ 

(3.2) 

(3.3) 
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To prove that the corresponding limit exists we use an argument which is a refinement 
of that used in section 2. Consider a L x L square and partially cover it with p 2  squares 
of side M + 2, where p is given by (2.5). Label these squares with two indices i and j ,  
1 zz i, j " p .  Let the walk crossing the ( i , j )  square of sides M x M have nV edges. In 
order to concatenate these walks and join (0,O) to ( L ,  L ) ,  as in figure 1,  we need an 
additional 

m = 2 p ( p - l ) + 2 q + 4  (3.4) 

edges. Since each square can be crossed independently 

D D  

Multiplying both sides by x " ~ ~ + - ~ + ~ p p  and summing over n , , ,  n I 2 , .  . . , npp gives 

c , ( x ) p 2 s  [n , , , (M)  - nmi,(M)+ ~ ] P ' X - ~ C ~ ( X ) .  (3.6) 

For any E > 0 there exists an infinite set of integers Y (  E )  such that 

E 
log A ( E )  - - S  L-2 log CL(X) log A ( & )  (3.7) 2 

for all L E  Y ( E ) .  For any M E  Y ( E ) ,  (3.6) and (3.7) imply that 

log c, (x) log( M 2  + 1 )  - 2110g XI 

( M + 2 ) 2  ( M + 2 y  ( M + 2 y  
- 3 

log( M 2  + 1) - 2(log XI 
3 -  (My2)2(log A ( x )  -- 3 - (M+2)2  (M+2)2 '  

We now take M E  Y ( E )  sufficiently large that this final expression is bounded below 
by log A (x)  - E, giving 

which, on letting E -+ 0, establishes the existence of the limit 

lim L - ~  log c,(x) =log A(x) .  
L-00 

Clearly CL( 1) = c (  L )  and, for x 2 1,  

max[c,,,,( L)x"mu~, c( L ) ]  s C L ( x )  zz c( L)x"m.lr 

so that 

max[log pH +log X, log A ]  log A ( x )  log A +log x 

(3.10) 

(3.11) 

(3.12) 

which implies that 

(3.13) 



5606 S G Whittington and A J Guttmann 

-tog P -log P H  

For x 6 1 we obtain a convenient upper bound by noting that every walk which 
crosses the square is 'doubly unfolded' and hence c , ( L ) c p "  (since such walks can 

log x 

be concatenated to yield a super-multiplicative inequality [ 151). This gives 

" n u x  

n = 2 L  
) / ( I  - p ) .  

C,(X)S p n x n  = (px)2L(1 - (px )  nmax-2L-I  

If x > 1 / p  this implies that 

log A (x )  S log p + log x. 

If x s  l /p  we have 

logA(x)sO 

and this, together with the bound 

C,(x) 5 c2L(L)x2L 

implies that 

logA(x)=O 

for all x =s l / p .  Hence log A(x) is non-analytic. Since 

C,(x) 3 cnmJ L)xnm- 

and so 

log A (x) 5 log pH + log x 

there must be a singular point xo in the range 
p - 1  s x o s p l . ' *  

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

The results of this section are summarized in the sketch of the expected ,ehaviour 
given in figure 2. 
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4. Numerical results 

We have derived exact values of c,  ( L )  for L S 6 and  the results are given in table 1. 
The rather small values of L which can be studied are a result of the A L 2  behaviour. 
Summing over values of n we obtain c(  L )  which, from section 2, behaves as A L’ iO(LL) .  

We estimate that A = 1.756i0.01. 
We next consider the behaviour of the mean number of steps in a walk which 

crosses a n  L x L square. At fugacity x,  the definition analogous to that given in 
(2.18) is 

and  we expect that 

( n ( x ,  L ) ) =  A ( x ) L 2 [ I  + o ( l ) ]  (4.2) 
for x >  x o .  Plots of ( n ( x ,  L ) ) / L 2  against L-’ show considerable curvature and  we have 
estimated the amplitude A ( x )  by quadratic fits to these curves in most cases. In figure 
3 we show the x dependence of the amplitude estimates. It seems quite clear that the 
amplitude is going to zero as x decreases and  will be zero for all x less than some xo 
which is between 0.3 and  0.4, but it is difficult to form a more precise estimate on the 
basis of the available data. 

The mean number of steps plays the role of an  energy and we might hope to form 
a better estimate of the location of the transition by studying the corresponding 

Table 1. Values of fc , , (L) .  

n L = l  L = 2  L = 3  L = 4  L = 5  L = 6  

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 

1 
3 
2 10 
1 18 35 

24 112 
24 255 
16 478 

793 
1112 
1053 
366 

52 

126 
600 

1952 
5 280 

12 914 
29 356 
60 934 

108 718 
150 190 
140 388 
85 192 
30 668 

5 090 

462 
2 970 

12 593 
44 042 

138 853 
410 740 

1154701 
3 070 020 
7 565 205 

16 669 950 
31 346216 
48 048 122 
58 413 332 
55 097 850 
39 077 429 
19 643 936 
6 198 379 

939 626 
55 856 
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0 3  0 5  0 7  09 1.1 1 3  1 5  

Fugacity 

Figure 3. Estimate of the fugacity dependence of the amplitude for the mean number of 
edges in a walk crossing a square. 

fluctuation quantity 

which plays the role of a heat capacity. For each value of L this quantity has a single 
maximum and we have plotted the locations xmax(L) of these maxima against 1/15 in 
figure 4. The curve shown there is a quadratic fit to the results. Again, it appears that 
the phase transition occurs between 0.3 and about 0.4, but it is difficult to give a precise 

0 0.1 0.2 0 3  0 .4  0 5 0.6 
l l f  

Figure 4. The location of the maximum in the V ( x ,  L) against x curves, as a function of L. 
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estimate. From the results of section 3 we know that x,,5 p- '  and the best numerical 
estimate of p is 2.6381 [16], so that xoZ 0.379.. . . Hence our results suggest that 
xo is between this value and  about 0.4, with a strong possibility that the value is exactly 

- 1  
w u  

5. Discussion 

The two primary results of this paper are the proof that the number of self-avoiding 
walks which cross a square of side L scales like a constant to the power L2, and that, 
when a fugacity is associated with the number of steps in the walk, there is a phase 
transition in the problem. Hattori et a1 [ l l ]  have recently found a similar phase 
transition in the corresponding problem on a pre-Sierpinski gasket. 

We have not identified the location of the transition (though we have suggested 
that it may occur at exactly xo = k - ' ) ,  nor have we investigated the associated critical 
exponents. Further study of these questions will, we believe, help in the understanding 
of phase transitions in polymer systems. 
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